Structural basis for evolution of product diversity in soybean glutathione biosynthesis.
نویسندگان
چکیده
The redox active peptide glutathione is ubiquitous in nature, but some plants also synthesize glutathione analogs in response to environmental stresses. To understand the evolution of chemical diversity in the closely related enzymes homoglutathione synthetase (hGS) and glutathione synthetase (GS), we determined the structures of soybean (Glycine max) hGS in three states: apoenzyme, bound to gamma-glutamylcysteine (gammaEC), and with hGSH, ADP, and a sulfate ion bound in the active site. Domain movements and rearrangement of active site loops change the structure from an open active site form (apoenzyme and gammaEC complex) to a closed active site form (hGSH*ADP*SO(4)(2-) complex). The structure of hGS shows that two amino acid differences in an active site loop provide extra space to accommodate the longer beta-Ala moiety of hGSH in comparison to the glycinyl group of glutathione. Mutation of either Leu-487 or Pro-488 to an Ala improves catalytic efficiency using Gly, but a double mutation (L487A/P488A) is required to convert the substrate preference of hGS from beta-Ala to Gly. These structures, combined with site-directed mutagenesis, reveal the molecular changes that define the substrate preference of hGS, explain the product diversity within evolutionarily related GS-like enzymes, and reinforce the critical role of active site loops in the adaptation and diversification of enzyme function.
منابع مشابه
Recent advances in combinatorial biosynthesis for drug discovery
Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources...
متن کاملAssociation Analysis for Important Quantitative and Morphological Traits in Cultivars and Advanced Lines of Soybean (Glycine max (L.)) using Microsatellite Markers
IExtended Abstract Introduction and Objective: The economic value of a genotype depends on its various traits and therefore the accurate knowledge of genetic behavior and identification of genomic locus involved in controlling these traits can help the breeder to improve genotypes. Material and Methods: In this study, the relationship between microsatellite markers with some important agrono...
متن کاملStimulation of glutathione synthesis in photorespiring plants by catalase inhibitors.
The effect of various herbicides on glutathione levels in barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), soybean (Glycine max [L.] Merr.), and corn (Zea mays L.) was examined. Illumination of excised barley, tobacco, and soybean plants for 8 hours in solution containing 2 millimolar aminotriazole (a catalase inhibitor) resulted in an increase in leaf glutathione from 250 to 400 na...
متن کاملInsights into the Biosynthesis of 12-Membered Resorcylic Acid Lactones from Heterologous Production in Saccharomyces cerevisiae
The phytotoxic fungal polyketides lasiodiplodin and resorcylide inhibit human blood coagulation factor XIIIa, mineralocorticoid receptors, and prostaglandin biosynthesis. These secondary metabolites belong to the 12-membered resorcylic acid lactone (RAL12) subclass of the benzenediol lactone (BDL) family. Identification of genomic loci for the biosynthesis of lasiodiplodin from Lasiodiplodia th...
متن کاملPlant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products
In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an anti-oxidant by quenching...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2009